THE ROLE OF BASE ASSOCIATION IN BASE-PROMOTED β-ELIMINATIONS FROM 2-ALKYL HALIDES AND ARENESULFONATES

Richard A. Bartsch, Gerald M. Pruss, Richard L. Buswell, and Bruce A. Bushaw Department of Chemistry, Washington State University, Pullman, Washington 99163

(Received in USA 1 May 1972; received in UK for publication 22 May 1972)

The factors which control positional and geometrical orientation¹ in base-promoted β -eliminations from 2-alkyl halides and arenesulfonates have been the subject of numerous investigations in recent years.² We wish to report a heretofore unexpected effect of base association.

Olefin products observed in reactions of 2-butyl bromide and p-toluenesulfonate with <u>t</u>-BuOK-<u>t</u>-BuOH and <u>t</u>-BuON<u>m</u>Pr₄-<u>t</u>-BuOH are recorded in the Table. It is immediately evident from these results that positional and geometrical orientation are dependent upon base concentration for reactions of 2-bromobutane with <u>t</u>-BuOK-<u>t</u>-BuOH (Expt. 1-4). Increase in the base concentration affords a higher percent of 1-butene and lower <u>trans</u>-:<u>cis</u>-2-butene ratio.⁵ In contrast, the relative proportions of isomeric butenes are unaffected by variation of the base concentration in reactions of 2-bromobutane with EtOK-EtOH and <u>t</u>-BuOK-DMSO.⁶

Under the reaction conditions which were employed for the reaction with <u>t</u>-BuOK-<u>t</u>-BuOH, formation of butenes by solvolysis of 2-butyl bromide in <u>t</u>-BuOH is negligible.⁶ This precludes conceivable explanations for the effect of base concentration upon orientation which involve concomitant solvolytic and base-induced eliminations.

The most reasonable interpretation of these observations is an effect of base association upon orientation in solvents of low polarity. In a solvent of such low dielectric constant as <u>t</u>-BuOH (≤ 8.5 at 50°)⁷ and at base concentrations of 0.1-1.0 M,

2621

t-BuOK undoubtedly exists to a very large extent as ion pairs and aggregates of ion pairs. Nevertheless, even a small concentration of free t-butoxide ions could compete effectively as the elimination-inducing species because of the much greater basicity of the dissociated base in t-BuOH.⁸ The equilibrium between dissociated and associated t-BuOK should be concentration dependent with the proportion of associated base being enhanced by increases in the total base concentration.⁹ It is proposed that the changes in orientation which attend increases in the base concentration for reactions of 2-bromobutane with t-BuOK-t-BuOH (Expt. 1-4) result from a greater proportion of the elimination being induced by the associated base when the total base concentration is increased,¹⁰ If this hypothesis is correct, a lower percent of 1-butene and a higher trans-: cis-2-butene ratio should result from an increase in the proportion of the dissociated base. For reactions of 2-bromobutane with t-BuOK-t-BuOH in the presence of the crown ether¹² dicyclohexyl-18-crown-6 (Expt. 5) or with <u>t</u>-BuONnPr₁-<u>t</u>-BuOH¹³ (Expt. 6), the proportion of dissociated base should be markedly increased over that for t-BuOK-t-BuOH. As can be seen from the data in the Table, the predicted changes in orientation occur.

The results presented in the Table (Expt. 7 and 8) also strongly implicate base association as the causative factor for the <u>trans</u>-:cis-2-alkene ratios of less than unity which have been reported for reactions of 2-alkyl arenesulfonates with t-BuOK-t-BuOH.^{14,15}

Thus, dramatic differences in orientation are observed for reactions of 2-butyl bromide and <u>p</u>-toluenesulfonate with associated and dissociated <u>t</u>-BuOK in <u>t</u>-BuOH. These differences may be readily rationalized in terms of existing steric theories of orientation¹⁴,¹⁶ when the large steric requirements of the associated base (aggregates of ion pairs) are considered.

oferinic roduces in grammations from 2-bucyr browide and p-fordenesurionate at 30.					
Expt.	X of 2-BuX ^a	Base-Solvent	[Base]	% 1-Butene	<u>trans</u> -2-Butene <u>cis</u> -2-Butene
1	Br	<u>t</u> -BuOK- <u>t</u> -BuOH	1.0	50.6	1.47
2	Br	<u>t</u> -BuOK- <u>t</u> -BuOH	0.5	44.1	1.66
3	Br	<u>t</u> -BuOK- <u>t</u> -BuOH	0.25	41.6	1.78
4	Br	<u>t</u> -BuOK- <u>t</u> -BuOH	0.1	37.7	1.86
5	Br	<u>t</u> -BuOK- <u>t</u> -BuOH ^b	0.5	32.5	2,92
6	Br	<u>t</u> -BuON <u>n</u> Pr ₄ - <u>t</u> -BuOH ^C	0.25	31.3	3.00
7	озо ₂ с ₆ н _ц р-сн ₃	<u>t</u> -BuOK- <u>t</u> -BuOH	0.5	63.5	0.40
8	оso ₂ с ₆ н _ц р-сн ₃	<u>t</u> -BuOK- <u>t</u> -BuOH ^b	0.5	53.6	1.88

TABLE

Olefinic Products in Eliminations from 2-Butyl Bromide and p-Toluenesulfonate at 50°.

 $a_{[2-BuX]} = 0.1 M.$ ^bDicyclohexyl-18-crown-6 (0.3 M) present. ^cPrepared by mixing 0.25 M <u>t</u>-BuOK-<u>t</u>-BuOH with an appropriate amount of <u>n</u>Pr₁₄NBr. Glpc analysis of the reaction products revealed the presence of a compound with greater volatility than butenes which was assumed to be 1-propene produced by a competitive base-induced elimination from the tetra-<u>n</u>-propyl ammonium ion. In view of the low basicity of <u>n</u>Pr₃N compared to <u>t</u>-BuOK, this side reaction should not seriously influence the buteneforming elimination.

REFERENCES AND FOOTNOTES

- Positional orientation refers to the relative proportions of 1- and 2-alkenes formed; whereas geometrical orientation compares the relative amounts of <u>trans</u>-2alkene and <u>cis</u>-2-alkene produced.
- (2) See references 3 and 4 and publications cited therein.
- (3) R. A. Bartsch, C. F. Kelly, and G. M. Pruss, J. Org. Chem., 36, 662 (1971).

- (4) I. N. Feit and W. H. Saunders, Jr., J. Amer. Chem. Soc., 92, 1630 (1970).
- (5) No change in orientation was noted for variation of the concentration of 2-bromobutane (0.1, 0.25, 0.5 M) in reactions with 1.0 M <u>t</u>-BuOK-<u>t</u>-BuOH.⁶
- (6) R. A. Bartsch, G. M. Pruss, R. L. Buswell, and B. A. Bushaw, unpublished data.
- R. C. Weast, "Handbook of Chemistry and Physics", 48th ed., The Chemical Rubber
 Co., Cleveland, Ohio, 1967, p. E-57.
- (8) D. Bethell and A. F. Cockerill, <u>J. Chem. Soc. B</u>, 913 (1966).
- (9) J. Zavada and J. Svoboda, <u>Tetrahedron Lett.</u>, 23 (1972).
- (10) An explanation involving competition between dissociated and ion-paired base species in <u>syn-</u> and <u>anti</u>-elimination pathways has recently been advanced by Zavada and Svoboda in order to interpret the base dependence of orientation in reactions of 1,1,4,4-tetramethyl-7-cyclodecyl <u>p</u>-toluenesulfonate with <u>t</u>-BuOK in DMF.⁹ An important difference between the reactions studied by Zavada and Svoboda and those in the present investigation is the exclusive <u>anti</u>-elimination stereochemistry which is observed in base-promoted eliminations from 2-bromobutane.¹¹
- (11) R. A. Bartsch, <u>J. Amer. Chem. Soc.</u>, <u>93</u>, 3683 (1971).
- (12) Crown ethers complex strongly with potassium ions. See C. J. Pederson, <u>J. Amer.</u> <u>Chem. Soc.</u>, <u>89</u>, 7017 (1967).
- (13) Benzyltrimethylammonium <u>t</u>-butoxide is dissociated to a much greater extent than is <u>t</u>-BuOK in <u>t</u>-BuOH.⁸
- (14) H. C. Brown and R. L. Klimisch, <u>J. Amer. Chem. Soc.</u>, <u>87</u>, 5517 (1965).
- (15) R. A. Bartsch and J. F. Bunnett, <u>J. Amer. Chem. Soc.</u>, <u>91</u>, 1376 (1969).
- (16) H. C. Brown and R. L. Klimisch, <u>J. Amer. Chem. Soc.</u>, <u>88</u>, 1425 (1966).